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Abstract 
 
Sorghum yield in semi-arid regions is constrained by soil fertility and moisture stress which are worsened 

by climate variability. Water and nitrogen present a strong interplay in sorghum growth and yield in dry 

lands. In view of these constraints, selection of genotypes that concurrently maximize the use of these two 

resources is important. A study was carried out in short rains 2018 and 2020 at Katumani, Machakos to 

evaluate effect of nitrogen fertilizer on water use efficiency and determine water efficient sorghum 

genotypes. The experimental design was a randomized complete bock design with split-plot arrangement. 

Sorghum genotypes plus a check were planted in the main plot and nitrogen fertilizer at three levels (0, 6.5, 

32.5 kg ha-1) with 10 kg P ha-1 as basal fertilizer was applied in the split plots. Potential evapotranspiration 

(ETo) was used to determine water use efficiency. The experiment was replicated three times. The results 

showed that, use of nitrogen fertilizer at (6.5 kg N) ha-1 and (32.5 kg N) ha-1 significantly increased sorghum 

water use efficiency (WUE) from 9.68 to 16.69 (72%) and 9.68 to 25.8 (170%) biomass kgha-1mm-1 and 3.14 

to 5.55 (77%) and 3.14 to 9.28 (196%) grain kgha-1mm-1 , respectively, in SR 2018 and from 29.35 to 32.8 (12%) 

and 29.35 to 36.61 (25%) biomass kg ha-1 mm-1  and from 11.46 to 13.39 (17%) and 11.46 to 15.45 (35%) grain 

kg ha-1 mm-1 , respectively, in SR 2020. The sorghum mean total dry matter and grain yields were 

significantly correlated (R2 = 0.8-0.9) to mean WUE. Five genotypes had significantly large WUE. It was 

concluded that nitrogen fertilizer significantly increased WUE of sorghum genotypes in semi-arid 

Machakos and there are five genotypes with significantly higher WUE than Gadam and are recommended 

to farmers and incorporation in breeding programmes for drought tolerant sorghum. 
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Introduction 

Sorghum is grown in semi-arid lands due to its 
ability to survive severe and recurrent droughts 
when other crops fail (Keith et al., 2019; Assefa et 
al., 2017). It is an efficient C4 crop with high water 

use efficiency and efficient in conversion of 
carbon into starch and globally feeds over 500 
million people in more than 30 countries in semi-
arid lands (Hariprasanna and Rakshit, 2016). 
Sorghum production in semi-arid lands is 
constrained by inadequate soil moisture, severe 
and recurrent droughts (Mwamahonje et al., 2021; 
Masaka et al., 2021; Assefa et al., 2017; Assefa et al., 
2010), low soil fertility (Mishra et al., 2015; Muui 
et al., 2013) and planting of inappropriate 
genotype traits (Amelework et al., 2016; Omoro, 

2013). Its grain yield increase as rainfall increases 
in a season and decreases as rainfall decrease 
through decreased growth development and less 
seed formation (Bosire et al., 2019; Msongaleli et 
al., 2017). Higher variability (45%) in sorghum 

yields can be attributed to climate change which 
affects the soil resources for sorghum production 
in semi-arid environments (Bosire, 2019; Omoyo, 
2015). Soil moisture limits production of grain 
sorghum in semi-arid lands (Masaka et al., 2021; 
Assefa et al., 2017; Amelework et al., 2016). The 

decline in sorghum productivity in semi-arid 
lands is enhanced by low soil fertility (Zaongo et 
al., 1997). In semi-arid West Africa, nitrogen 

application increased sorghum grain yield by 
20% and water use efficiency by 21% (Zaongo et 
al., 1997). Soils in semi-arid lands in the country 
(Itabari et al., 2013), East Africa (Egeru et al., 2019) 
and beyond (Queiroz et al., 2018) are low in 

nitrogen which limits sorghum and other crops 
production. The semi-arid lands soils in the 
country are low in organic matter (≤ 0.2% OM), 
nitrogen (< 0.2%N) and phosphorus (≤ 20 mg/kg 
soil) (NAAIAP, 2014) and will require application 
of these deficient nutrients for increased growth, 
water use efficiency and sorghum productivity.  

In semi-arid lands, sorghum response to N 
fertilizer application is variable depending on 
soil N, rainfall amounts (Yu and Zhao, 2022; 
Workat et al., 2020; Kathuli et al., 2017; Kaizzi et 
al., 2012; Baa and Mwinkaara, 2009), climate, 
genotypic factors (Mahama et al., 2014; Mahama, 
2012;) and sorghum N use efficiency (Wang et al., 

2014). 

Sorghum grain yield has been found to be 
increased as WUE when soil moisture in the soil 
was increased under conservation tillage with 
and without nitrogen application within semi-
arid Niger in West Africa (Zaongo et al., 1997). 

Water use efficiency (WUE) which is a measure 
of the ability of a crop to use available water from 
the soil is a measure of a crop to survive in water 
scarce environment and is referred to as crop 
resistance to drought (Blum, 2005). It can be 
estimated from crop productivity per millilitre of 
rain water, that is, WUE = crop yield/Tcrop = 
kg/mm rainfall. The available water (Tcrop (mm)) 
for crop growth is the amount of rainfall water 
used by a crop to grow. From crop water balance 
equation, crop water use (cwu) or Tcrop (mm) = P-
R-D-E-Tweeds – Δs (Ajeigbe et al., 2018; Abunyewa 
et al., 2011; Kinama et al., 2005; Itabari, 1999) 

where Tcrop = transpiration, P = precipitation, R = 
runoff, D = drainage, E = soil evaporation and Δs 
is change in soil water stored within the rooting 
zone.  

Tcrop is water transpired by crop as it grows and 
develops grains and biomass. It is potential 
evapotranspiration of the crop and can be 
measured directly as crop transpiration using a 
special tool that allows for measurement of crop 
transpiration (WUE = crop yield kg/Tcrop , where 
crop transpiration (Tcrop) is measured directly 
(Yunxuan et al., 2018). WUE can be measured from 
crop water balance (Ajeigbe et al., 2018; Abunyewa 
et al., 2011). It can further be measured from 

potential evapotranspiration (ETc) of the crop and 
can be expressed as WUE = kg biomass ha-1 mm-

1 rainwater.  ETc is calculated from potential 
evaporation (ETo) obtained from evaporation 
pan data considering its pan coefficient (kp) and 
crop transpiration coefficient (kc) (Allen et al., 

1998). ETo is also estimated by the use of the 
Penman- Monteith method (Allen et al., 1998). 

Pan Evaporation method is significantly (p< 0.001) 
well correlated to other methods for estimation of 
potential evaporation (ETO) (Amatya et al., 2018). 
Water use efficiency (WUE) is also calculated as 
units of dry grain yield per unit cropland (Y, kg 
ha-1) divided by the units of water consumed by 
the crop (ETc, mm) to produce that yield 
(Ibragimov et al., 2007). WUE = Y/ETc. Where 
WUE refers to crop water use efficiency and the 
unit is kg m-3 which can be unified with the unit 
kg ha-1 mm-1. ETo is potential evaporation, and 
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usually expressed as a depth of water (mm). 
Water use efficiency can also be measured in terms 
of crop transpiration efficiency (TE) = 
biomass/water transpired or determination of 
biomass accumulated because it is correlated to 
carbon assimilation and leaf area development 
(Shaobing and Krieg, 1992). At the leaf level, TE is 
defined as the intrinsic WUE; that is, the ratio of 
instantaneous CO2 assimilation (A) to 
transpiration (T) = A/T (Vadez et al., 2014) and 

this can also be used to determine WUE of a crop 
after measuring transpiration using lysimeters. 
WUE can also be estimated from productivity per 
unit of water used to produce the productivity 
(Feisota et al., 2017), WUE= P/V. P = 

Productivity, V = volume of water. Units:  kg m-

3. 

 In sorghum growing semi-arid lands in the 
country, farmers grow many sorghum genotypes 
with or without minimum soil fertility 
improvement attaining very low yields (< .5t ha-
1) (Muui et al., 2019; 2013). The reasons for low 

yield are hypothized to be due to low use of 
inputs, inappropriate genotypes, and lack of 
knowledge on sorghum genotypes with better 
nitrogen use efficiency and higher water use 
efficiency and inadequate soil moisture 
conditions among others. Elsewhere, sorghum 
genotypes have been found to have different yields 
and tolerance to climate change in Sudan (Abdalla 
and Gamar, 2011). This suggests that among the 
sorghum genotypes grown in semi-arid regions in 
the country there are some which could be drought 
tolerant as measured by their productivity and 
water use efficiency (grain ha-1mm-1 rainfall) in 
scarce soil moisture conditions.  

Past Studies have shown that crop production 
and water use efficiency can be increased in semi-
arid lands by insitu rainwater harvesting when 
used together with soil fertility improvement 
(Kathuli et al., 2015; Kathuli et al., 2010; Steiner 

and Rockstrom, 2003). In arid and semi-arid 
regions of eastern Africa, insitu rainwater 
harvesting increases rain water productivity 
from 1-1.5 to 3-4.5 kg mm-1 rainwater (Steiner and 
Rockstrom, 2003). It would be justified to 
evaluate sorghum genotypes response to 
nitrogen application and effect of nitrogen 
application on grain yield and water use 
efficiency. Sorghum with higher water use 
efficiency and biomass yield will be drought 
tolerant and suitable for semi-arid conditions 
(Youngquist et al., 1992). 

The objective of this study was to determine the 
effect of nitrogen fertilizer on sorghum genotypes 
yield, water use efficiency, identify genotypes 
with higher water use efficiency in semi-arid 
lands and evaluate the relationship between 
genotype yield and water use efficiency. The 
working hypothesis was that, use of nitrogen 
fertilizer increases sorghum genotypes yields and 
water use efficiency differently and sorghum 
genotypes yield increased as water use efficiency 
of the genotypes and there are some sorghum 
genotypes with high water use efficiency and can 
be recommended for sorghum breeding program 
for semi-arid lands. 

 

 

Materials and Methods 

Study site 

The study site was located at KALRO Katumani in Machakos County (Figure 1). 
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Figure 1 

The experimental site at KALRO Katumani, Machakos 

 
 

Date 2018            2020   

 OCT NOV DEC JAN FEB MAR APR MAY JUN JULY AUG SEP OCT  NOV DEC 

1 0 6.6 5.9 1 12.9 15.5 0 0 0 0 0 0 0 0.2 0 

2 0 0 0 0 0 1.5 0 0 0 0 0 0 0 0.2 0 

3 0 0 23.3 2.2 2.6 0 11.8 0 0 0 0 0 0 4 0 

4 0 0 37.5 0.5 0 6.5 0 0 0 0 0 6.8 0 0.3 0 

5 0 0 6.4 16.6 0 0 0 0 0 0 0 1 0 2.9 0 

6 0 0 0 40.5 0 0 3.7 1.6 0 0 0 0 0 0.2 0 

7 12 0 39 9.1 0 0 4.5 0 0 0 0 1.4 0 0 0 

8 0.2 0 4.7 8.1 0 0.7 0 0 0 0 0 0 0 1.3 0 

9 0 0 1.4 0 0 0 0 0 5.3 1.5 0 0 0 9.5 2.3 

10 0 0 21.2 0 0 0 0 2.6 0.2 0 0 0 0 14.8 0 

11 0 3.2 0.4 0 0 0 0 0 0 0 0.7 0 0 1.5 0 

12 0 0 26.9 25.9 0 1.4 0 0 7.2 0 0 0 0 0.8 1 

13 0 0 22 2.3 14.3 0 4.3 0 3.8 0 0 0 0 14.1 0 

14 0 0 11.9 10 1.2 0 2.7 0 0 0 0 0 0 0.5 0 

15 0 0 4.2 7 3.6 0 1.4 0.3 0 0 0 0 0 3.5 0 

16 0 0 0 0 2 0 17.9 3.2 0 0.3 0 0 0 0.4 0 

17 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 4.1 32.7 0 0 0 0 0 0 0 0 

19 0 66.2 9.4 0 0 0 0 0 0 0 0 0 8.7 6.4 0 

20 0 5 0 0 0 6.5 65.7 0 0 0 0 0 0 0 0 

21 0 9 0 0 0 0 12.8 0 0 0 0 0 0 3.6 0 

22 1.8 0 0 0 1.8 0 31.3 0 0 0 0 0 0 0 0 

23 3 0.2 0 0 0.3 0 2.4 0 0 0 0 0 0 1.7 0 

Table 1  
 
Katumani Machakos meteorological station   short rains 2018/2020 OCT-DEC seasons 
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The study was conducted in the short rains season of 2020 at KALRO Katumani, Machakos (1o 35’S and 37o 
14’ E, 1600 m above sea level). The area has mean annual temperatures varying from a minimum and 
maximum of 13.7OC and 24.7Oc respectively (Wamari et al., 2012) with a bimodal rainfall pattern with long 
and short rainfall seasons occurring from March to May (MAM) and from October to December (OND), 
respectively. The average rainfall for the short and long rain seasons is 250 and 350 mm, respectively, with 

annual mean of 655 mm  

(Wamari et al., 2012). Long rains are very unreliable, poorly distributed and insufficient for crop production 
(Itabari et al., 2011). Rainfall amounts and distribution at the study site for short rain seasons in 2018 and 

2020 is shown in Table 1. 

  

The soils have sandy clay loamy texture, have 
surface crusting and low in organic matter and 
prone to erosion due to their weak structural 
stability of aggregates. The soils are chromic 
luvisols (FAO/UNESCO, 1990), very low in 
nitrogen (0.15%) and organic matter (0.88% 
organic carbon), low phosphorus (17.2 mg/kg), 
slightly acidic (pH 6.10) with adequate potassium 
(2.05 Cmol/kg) and trace elements in top soil 0-
30 cm depth as determined using recommended 
methods in our country (Hinga et al., 1980). 

 

Sorghum genotypes 

The 10 sorghum genotypes used in this study 
were shortlisted from 108 genotypes obtained 
from sorghum growing regions in semi-arid 
areas of the country. The sorghum genotypes 
were shortlisted based on high nitrogen use 
efficiency measured as kg grain N-1 (Moll et al., 

1982), kg total dry matter (TDM) kg plant N-

1(Hirose, 2011), percent N derived from the soil 
(%Ndfs) and TDM yield (Youngquist et al., 1992).  

 

 

Experimental design and plot layout 

Experimental design was RCBD with split plot 
arrangement where sorghum genotypes were in 
main plot and fertilizer nitrogen in the split plots. 
Sorghum genotypes Siaya Ngware, Kivila kya Ivui 
(MKN), Rasta Kitui (116) Mary Mbisu, Rasta Kitui 
(Mali Musomba), Nyaktos (177) Siaya, Kitaa kya 
Ivui (Andrew Malai), Kilifi local (107), Embu local 
(109), Ochuti (Siaya), Taita Taveta local and Gadam 

local check were planted in a main plot of 4m x 
9m. This plot had been split into 3 plots of 4m x 
3m which were nitrogen fertilizer plots. Each 
sorghum genotype was planted four lines in a 
plot of 4m x 3m separated from other plot by 0.5 
m path. One replicate had 33 plots and the 
experiment was replicated three times. The 
experiment was laid out in a north to south 
orientation with a west aspect.  
 
Nitrogen fertilizer treatments and sorghum 
planting  
There were three nitrogen fertilizer treatments; - 
N0 (0 kg N) ha-1, N1 (6.5 kg N) ha-1, and N2 (32.5 
kg N) ha-1).  The plots were 4 m x 3 m separated 
by 0.5 m and accommodated four lines of 
sorghum with inter row spacing 90 cm and 20 cm 

24 1.9 6.2 0 1.7 0 0 45.8 0 0 0 0 0 0 0 0.2 

25 0 30 0.1 32.6 0 0 0 0 0 0 0 0 0 0 0 

26 2.9 3.3 0.5 1.9 11.8 61 20.8 0 0 0 0 0 9.4 0.2 0 

27 1.9 0 0 25.7 7.4 0 0 0 0 0 0 0 0 36.3 0 

28 0 8.7 0 3.9 0 28.4 10 0 0 0 0 0 2.3 9.5 0 

29 0 0 0 0 0 42.4 5.8 0 0 0 0 0 0 5.1 0 

30 0 0 0 0 0 0 0.3 0 0 0 0 0 1.2 0 13.7 

31 0  0 44.4 0 0 0 0 0 0 0 0 0.6  12.5 

TOTAL 23.5 138.4 214.8 233.4 57.9 179 273.9 7.7 16.3 1.8 1.8 9.2 20.4 116.2 29.5 

TOTAL SEASON   376.7            166.1 
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hill to hill. Two sorghum seeds were planted and 
immediately thinned to one plant after 
germination to minimized nutrient loses. The 
nitrogen treatments were randomized within the 
experimental layout. Phosphorus was applied as 
basal fertilizer during planting at 10 kg P ha-1 as 
triple super phosphate while nitrogen was 
applied at 0, 6.5 and 32.5 kg N ha-1 as calcium 
ammonium nitrate as top dressing fertilizer 20 
days after germination and after first weeding. 
Insecticide marshal was used to control shoot fly 

immediately after germination. 

Sorghum harvesting 
Two inner rows from four rows planted in each 
plot were harvested. Panicles from the two inner 
sorghum rows were cut off into a gunny bag and 
weight taken using an electronic hanging balance 

to three decimals. All the stover from the two 
inner row was cut at the base and weighed 
immediately. A sample of the stover was 
chopped and weighed as stover subsample for 
moisture analysis. This was done for all plots in 
each replicate. The panicles harvested were dried 
to constant weight for two weeks, threshed and 
winnowed and weighed. The stover subsample 
were oven dried at 70oC for three days and 
weighed as dry stover weight for moisture 
calculation. All grain and stover data were 
calculated in kgha-1 dry weight. 
Determination of sorghum genotype water use 
efficiency  
Pan evaporation (Epan) data for short rains 
season 2018 and 2020 was obtained from 
meteorological weather station at KALRO 

Katumani (Table 2).  

 
Table 2 
 
Pan evaporation data inclusive of pan coefficient during short rains 2018 and 2020 at KALRO Katumani, 
Machakos 

 SR 2018         SR 
2020 

  

 OCT NOV DEC OCT NOV DEC 

Mean evaporation 
(mm)/day 
(Pan coefficient = 0.5) 

5.4 4.5 4.4 5.8 4.2 5.2 

Evaporation (mm) 167.4 135 136.4 179.8 126 161.2 

Rainfall mm 23.5 138.4 214.8 20.4 116.2 29.5 
Solar  radiation (Langles 
/day) 

244.6 296.2 294.2 263.8 234.9 279.9 

 
The pan evaporation (Epan) has been multiplied 
by Kp pan coefficient to give potential 
evapotranspiration (ETo), that is, ETo * Kc = ETc. 
Kc is crop coefficient. Sorghum crop coefficient 
used here was 1.18 (Shenkut et al., 2013) taken at 

mid-growing season. 

In SR 2020, sum evaporation for the SR 2020 
season = Sum (179.8+126+161.2) = 467 mm= 
Epan. While in SR 2018, sum evaporation= sum 
(167.4 +135 +136.4) = 438.8 mm…. 
………………………………………………………

…………Equation (1). 

ETo= Epan * kp =467 *0.5= 233.5 mm. for SR 2020 
and 438.8*0.5=219.4 mm for SR 2018…………….   
Equation (2). 

ETc=potential evapotranspiration for sorghum at 
Katumani during SR 2020 = ((233.5 mm)*1.18 = 
275.53 mm/season. While ETc for SR 2018 = 219.4 
*1.18= 258.89 mm/season. WUE = grain yield 
kgha-1/ETc (kgha-1mm-1……………………… 
Equation (3). 

Crop evapotranspiration (ETc) was determined 
from water balance equation (Allen et al., 1998). 

ETc = Evapotranspiration or crop water use mm 
(Cwu) for every sorghum genotype in every 
nitrogen treatment for all replicates. 
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Evapotranspiration (Crop water use) the 
consumptive use of each treatment at various 
stages of the sorghum crop was estimated using 
the Water Balance Equation (Allen et al., 1998): ET 

= P ± ΔS + R + D. P = Precipitation (Rainfall) in 
mm, ΔS = Change in moisture storage (mm), R = 
Runoff (mm). Crop water use (Cwu) = 
precipitation-evaporation-runoff-drainage- 
change in soil moisture. Runoff =0, drainage = 0, 
change in soil moisture = 0. Cwu =precipitation-
evaporation (Ajeigbe et al., 2018; Abunyewa et al., 

2011). 

Productivity = Grain yield kg ha-1 was obtained 
from the experiment in the field. Kg grain or 

biomass ha-1 ………. Equation (4). 

Example1: This is based on equation 3 above such 
that, if grain yield = 1639 kg ha-1, ETc = 275.53 mm 
SR 2020 (calculated from meteorological data for 
Katumani (Table 2)), WUE =1639/ (275.53). Kg 
ha-1 mm-1. = 5.95 kg ha-1 mm-1. 

Another method for working WUE. WUE = 
productivity/volume of water used for 
production (Feisota et al., 2017) …... Equation (5).  

This procedure can also be used to compute WUE 
but the values will differ. (1mm rainfall = 10 
m3ha-1). 

If Rainfall SR 2020 = (Total rainfall in season) = 
166.1 mm, then volume of water for production = 
166.1 *10 m3 ha-1 =1661 m3ha-1…………………     

Equation.    (6) 

Then, WUE a (kg m-3) = WUE b (kg ha-1mm-1) /10 
(Ibragimov et al., 2007) from conversion of 

units……………. Equation (7).  

Example 2: WUE = 1639kg ha-1/1661 m3ha-1 = 
0.987 kg ha-1.m-3. For this case, runoff=0, 
Drainage=0, evaporation from surface= (Feitosa 
et al., 2017). 

Equation 3 was used for calculation of water use 
efficiency for every sorghum genotype in all 
treatments during both seasons SR 2018 and 2020 

following Example 1 above.  

Data analysis 
The two season data were statistically analyzed 
separately season by season using SAS. All data 
for sorghum grain yield, stover weight and water 
use efficiency were analyzed for variations 

within treatment means of nitrogen fertilizer, 
sorghum genotype yields and experimental 
errors arising from treatments and genotypes 
using single factor analysis of variance. Then F 
statistic arising from ratio of mean sum of squares 
N treatments/mean sum of squares experimental 
error and ratio of mean sum of squares genotype 
treatments/mean sum of squares experimental of 
genotypes was calculated. Comparing calculated 
F with F statistic at α = 0.05 it was possible to see 
if nitrogen treatments affected WUE, grain yield 
and stover weight of the sorghum genotypes and 
whether sorghum genotypes had significantly 
different WUE. Effect of treatments on WUE and 
effect of genotypes on WUE were separated using 
Duncan’s multiple comparison test at 95% 
confidence limit using Fishers’ least significant 

difference. 

Simple regression of sorghum biomass yield and 
grain yield with water use efficiency was carried 
out for each season by plotting a scatter diagram 
of grain yield (kgha-1) against water use efficiency 
(kg ha-1 mm-1) for the same treatment. Best fit line 

was plotted and regression R2 generated. 

 Results 

Effect of nitrogen fertilizer application on water 
use efficiency and yield of sorghum genotypes 
The results on effect of nitrogen fertilizer 
application on water use efficiency, and yield of 
sorghum genotypes during SR 2018 and 2020 is 
shown in Table 3. 

The results showed that WUE of sorghum grain 
and biomass yields were linearly increased by 
nitrogen fertilizer application at the study site.  In 
SR 2018, application of 6.5 kg N ha-1 and 32.5 kg 
N ha-1 significantly increased sorghum WUE 
from 9.68 to 16.69 biomass kg ha-1 mm-1 (72%) and 
from 9.68 to 25.8 kg biomass ha-1 mm-1 (170%), 
respectively. WUE measured as grain kg ha-1 mm-

1 was significantly increased by application of 6.5 
kg N ha-1 and 32.5 kg N ha-1 from 3.14 to 5.55 kg 
ha-1 mm-1 (77%) and from 3.14 to 9.28 kg ha-1 mm-

1 (196%), respectively. In SR 2020, application of 
6.5 kg N ha-1 and 32.5 kg N ha-1 significantly 
increased sorghum WUE from 29.35 to 32.8 (12%) 
and from 29.35 to 36.61 (25%) biomass kg ha-1 
mm-1, respectively. WUE measured as kg ha-1 
mm-1 was significantly increased by application 
of 6.5 kg N ha-1 and 32.5 kg N ha-1 from 11.46 to 
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13.39 kg ha-1 mm-1 (17%) and from 11.46 to 15.45 

kg ha-1 mm-1 (35%), respectively

 

Table 3 

Effect of nitrogen fertilizer on water use efficiency and yield parameters of sorghum genotypes grown in semi-arid 
Machakos during short rains 2018 and 2020. 

 

Treatments 
Water use efficiency  Grain yield Stover 

weight 

Total dry 

matter yield 

 

Biomass 

kgha-1mm-1 

grain kgha-

1mm-1 

grain kgha-

1m-3 
kgha-1 kgha-1 kgha-1 

 
2018 

2020 
201
8 2020 

2018 
2020 

2018 
2020 

2018 
2020 

2018 
2020 

(0 kg N )ha-1 
9.68c 29.35

c 
3.14
c 

11.46
c 

0.314
c 

1.146
c 

803c 3155
c 

1697
c 

4929
c 

2503
c 8086c 

(6.5 kg N )ha-

1 

16.69
b 32.8b 

5.55
b 

13.39
b 

0.555
b 

1.339
b 

1436
b 

3688
b 

2887
b 

5350
b 

4323
b 9038b 

(32.5 kg 
N)ha-1 

25.8a 36.61
a 

9.28
a 

15.45
a 

0.928
a 

1.545
a 

2396
a 

4256
a 

4291
a 

5832
a 

4692
a 

10088
a 

GM 17.39 32.92 5.99 13.43 0.599 1.343 1545 3972 2959 5590 4502 9563 

CV 27 7.1 29 7.2 29 0.72 24 5.8 24 9.7 27 6.1 

r2 0.86 0.97 0.86 0.98 0.86 0.98 0.93 0.99 0.92 0.95 0.86 0.98 

LSD(p≤0.05) 0.86 1.15 0.2 0.48 0.02 0.048 59 117 111 277 148 300 

Means followed by same letter in same column are not significantly different by Duncan’s multiple 
comparison test at 95% confidence limit. 

Relationship between sorghum yield and WUE 
Results of simple regression of sorghum mean 
total dry matter yield and grain yield visa-vice 
water use efficiency at Katumani Machakos is 

shown in Figure 2 

The results show that, total dry matter (TDM) 
yield of sorghum genotypes obtained in semi-
arid machakos were linearly positively correlated 
to how much rain water the crop was able to use 
from the soil for production. Implying that 
sorghum mean total dry matter yields are 
correlated (r2=0.8) to amount of rain water 
sorghum can extract from the soil to accumulate 
the dry matter. Similarly sorghum grain yield 
was significantly correlated (r2=0.9) to the water 

use efficiency. 

Water use efficiency of selected  sorghum 
genotypes  
Results on water use efficiency of selected  
sorghum genotypes from semi-arid regions in the 
country that were grown in Katumani, Machakos 
are shown in Table 4. The results show that six 
and one sorghum genotype had significantly (p≤ 
0.05) higher water use efficiency (biomass kgha-

1mm-1) in SR 2018 and SR 2020, respectively. Only 
two sorghum genotypes (Kitaa kya Ivui A6 
(Andrew Malai) and Kitui Rasta A4 (Malia 

Musomba) had significantly (p≤ 0.05) higher 
water use efficiency (grain kgha-1mm-1) in both 
seasons. In SR 2018, Kitaa kya Ivui (A6 Andrew 
Malai), Kitui Rasta (A4 Malia Musomba), Kilifi local 
(A7 197), Siaya Ochuti (A9), Siaya Nyaktos A5 (177) 
(and Taita Taveta local A10 (150) were found to be 



 

9 
 

significantly superior in rain water utilization 
based on biomass production per mm rainfall 
(biomass kg ha-1mm-1) in comparison to Gadam 
sorghum which is recommended for growing in 
semi-arid lands in the country. Only Kitaa kya Ivui 

A6 (Andrew Malai) had significantly higher 
WUE (biomass yield kgha-1mm-1) than the check 
in SR 2020. When WUE was expressed as grain 
kg ha-1 mm-1, only two sorghum genotypes (Kitaa 
kya Ivui (A6 Andrew Malai) and Kitui Rasta (A4 
Malia Musomba) were found to have significantly 

higher WUE than recommended Gadam 
sorghum variety for semi-arid lands in the 

country. Three sorghum genotypes (Rhoda 
Wayua A2 (Kivila Kya Ivui), Embu local V A8 
(198) and Siaya Ngware A1 (191) had similar WUE 
as the check in SR 2018. In SR 2020, Kilifi local V 
A7 (197), Rhoda Wayua A2 (Kivila Kya Ivui), Siaya 

Nyaktos A5 (177) had similar WUE as the check. 

 

 

 

Figure 2 

Simple regression analysis of (a) mean sorghum TDM and (b) grain yield (kgha-1) vs mean water use efficiency at 
Katumani, Machakos during SR 2020 and 2018 

 
 

 

Table 4 

Water use efficiency of selected sorghum genotypes from semi-arid grown at Katumani, Machakos during short rains 
2018 and 2020 

Genotypes Water use efficiency (WUE) 

  

 
Biomass kgha-
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 2018 2020 2018 2020 2018 2020 

Kitaa kya Ivui A6(Andrew Malai) 33.3a 47.61a 11.8a 19.90a 1.18a 1.990a 

Kitui Rasta A4(Malia Musomba) 31.4a 40.30b 11.9a 18.71ab 1.19a 1.871ab 

Kilifi local V A7(197) 27.1bcd 38.74bc 9.2cdef 14.68bcd 0.92cdef 1.468bcd 

Rhoda Wayua A2 (Kivila Kya Ivui) 18.0xyz 36.19bc 7.9lm 14.38cd 0.79lm 1.438cd 
Gadam check A11 21.0lmn 34.94bcd 8.6def 11.79cde 0.86def 1.179cde 

Siaya Nyaktos A5 (177) 24.7ghi 33.99bcd 7.2opq 15.75abc 0.72opq 1.575abc 

Embu local V A8 (198) 24.0kl 32.44de 7.8lm 12.54cde 0.78lm 1.254cde 

Siaya Ochuti A9 26.3fgh 28.75de 9.0efg 14.25cde 0.90efg 1.425cde 

Kitui Rasta A3 (116)(Mary Mbisu) 17.9xyz 28.56de 7.0opq 10.17e 0.70opq 1.017e 

Taita Taveta local A10 (150) 26.2fgh 23.80f 9.0efg 11.06de 0.90efg 1.106de 

Siaya Ngware A1 (191) 23.3lmn 16.8F 9.2def 4.52f 0.92def 0.452f 

GM 17.4 32.92 5.99 13.43 0.599 1.343 

CV 21 7.1 25 7.2 25 0.72 

r2 0.94 0.97 0.93 0.98 0.93 0.98 

l.s.d (p≤ 0.05) 3.5 6.7 1.4 4.2 0.14 0.42 

Means followed by same letter in same column are not significantly different by to Duncan’s multiple 

comparison test at 95% confidence limit. 

Discussion 

Effect of nitrogen fertilizer on sorghum genotype 
water use efficiency 
Nitrogen fertilizer application at 6.5 kg N ha-1 and 
32.5 kg N ha-1 significantly increased water use 
efficiency of sorghum genotypes by 12 and 25% 
biomass production per mm of rainfall in short 
rains 2020 and 17 and 35% grain production per 
mm of rainfall in the same season. In SR 2018, 
application of 6.5 kg N ha-1 and 32.5 kg N ha-1 
significantly increased WUE of sorghum 
genotypes by 72 and 170% biomass ha-1mm-1 and 
77 and 196% grain ha-1mm-1 respectively. The 
results agree with the findings of Ajeigbe et al., 
(2018) in semi-arid Sudan savanna zone in 
Nigeria where they found WUE of sorghum 
genotypes increased by 48-55% at BUK and 54-
76% at Manjibir due to nitrogen fertilizer 
application at 60 kg N ha-1. This implies that, 
WUE of sorghum genotypes is enhanced by soil 
moisture and available nitrogen in soil or applied 
as fertilizer and it is more when nitrogen is 
applied in low N soils. These results show that, 
sorghum responds well to nitrogen fertilizer 
application (Sigua et al., 2018; Gebremariam and 
Assefa, 2015; Kaizzi et al., 2012) and response is 

enhanced by availability of moisture in the soil 
(Yu and Zhao, 2022; Kathuli et al., 2017) and this 
explains why WUE increase due N fertilizer 
application was higher in both seasons. These 
results can be generalized beyond Katumani to 
other semi-arid regions provided seasonal 
rainfall, daily temperatures, and soil conditions 
are similar. The water use efficiency reported 
here could have been large because the site had 
low soil nitrogen implying possible nitrogen 
fertilizer response and the rains were below long 
term mean average (350 mm). The small 
increment in WUE of sorghum at Katumani 
Machakos is because of low rainfall (166.1 and 
376.7 mm) received in SR 2020 and 2018 seasons 
respectively. This explains why farmers grow 
sorghum genotypes with similar WUE as the 
check (Gadam) in semi-arid regions. The 
observation that when rainfall is adequate in 
semi-arid lands more sorghum genotypes (Kitaa 
kya Ivui (A6 Andrew Malai), Kitui Rasta (A4 Malia 
Musomba), Kilifi local (A7 197), Siaya Ochuti (A9), 
Siaya Nyaktos A5 (177) and Taita Taveta local A10 

(150) were found to be significantly superior in 
rain water utilization based on biomass 
production per mm rainfall (biomass kg ha-1mm-

1) in semi-arid Machakos in comparison to 
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Gadam sorghum. Sorghum productivity is 
enhanced by rainfall which increases nitrogen 
fertilizer response in semi-arid regions (Yu and 
Zhao, 2022; Kathuli et al., 2017).  

Relationship between sorghum yield and WUE 
Mean sorghum total dry matter yield was 
significantly correlated (r2 = 0.8) to mean 
sorghum genotype water use efficiency in SR 
2020 implying that in semi-arid lands, sorghum 
with large TDM yields have large water use 
efficiency and are more drought tolerant than 
sorghum genotypes with low TDM yields.  

Further regression of sorghum genotypes grain 
yields and WUE showed a significant correlation 
(r2=0.9). This showed that sorghum genotypes 
with large grain yields in semi-arid lands are 
adaptable to drought and have large WUE. This 
criterion can be used for selecting sorghum 
genotypes with large water use efficiency and 
resistance to drought for food security and 
sorghum improvement in semi-arid lands. These 
results concur with findings of Feitosa et al., 

(2017) that, in semi-arid Brazil, sorghum with the 
highest mean grain yield (2143 kg ha-1) had the 
highest mean water use efficiency (8.8 kg ha-1 
mm-1). The results concur with the findings of 
Hatfield and Dold (2019) that crop biomass or 
grain yield is correlated to water use efficiency 
and maximum sorghum grain and biomass. In 
that study twice irrigated sorghum had higher 
WUE than once irrigated sorghum (Mahinda et 
al., 2018). The relationship of mean sorghum total 

dry matter yield and WUE implies that higher 
yielding genotypes are drought resilient, 
efficiently use water, and are adaptable to 
drought conditions. 

Water use efficiency of selected  sorghum 
genotypes  
The results revealed that six sorghum genotypes 
(Kitaa kya Ivui (A6 Andrew Malai), Kitui Rasta (A4 
Malia Musomba), Kilifi local (A7 197), Siaya Ochuti 
(A9), Siaya Nyaktos A5 (177) and Taita Taveta local 

A10 (150) were significantly superior in rain 
water utilization based on biomass productivity 
per mm rainfall (biomass kg ha-1mm-1) in 
comparison to Gadam sorghum. Sorghum 
productivity is enhanced by rainfall which 
increases nitrogen fertilizer response in semi-arid 
lands (Yu and Zhao, 2022; Kathuli et al., 2017). 
However, more research is needed to show what 

will happen to WUE if rains are more in the 
season although it can be speculated that 
productivity will increase (Kathuli et al., 2017; 
Zaongo et al., 1997)  

These genotypes had 4-36% more water use 
efficiency than recommended Gadam sorghum 
variety at Katumani, showing potential for 
increased sorghum grain and biomass 
productivity under prevailing semi-arid 
conditions. The results are within what is 
reported for grain sorghum that WUE is within 1 
to 29 kg ha-1 mm-1 (Mahinda et al., 2018; Feitosa et 
al., 2017; Abunyewa et al., 2011). These results on 
water use efficiency are more than those reported 
in semi-arid northern Brazil by Feitosa et al., 

(2017) where sorghum had WUE of between 2.1 
kg ha-1 mm-1 to 8.8 kg ha-1 mm-1 and greater than 
those reported for sorghum in semi-arid Sudan 
savanna zone in Nigeria (Ajeigbe et al., 2018). At 

this area, sorghum WUE was 1.7-11.5 kgha-1mm-

1 at Manjibir and 4.4-12.9 kgha-1mm-1 at BUK sites 

respectively. The differences could be attributed 
to soil fertility levels and calculation because 
Feitosa et al., (2017) did not subtract evaporation 

water from rain water. These results disagree 
with the hypothesis that water use efficiency of 
sorghum genotypes is not significantly affected 
by soil nitrogen. Similar observations were 
observed in Sudan where performance of 19 
sorghum genotypes were assessed under water 
stress conditions at Shambat Experimental farm 
and found to respond differently to water stress 
with two genotypes giving higher yields than the 
rest (Hamza et al., 2016). Similarly, Abdalla and 

Gamar (2011) while researching on performance 
of selected sorghum genotypes under rain-fed 
areas of Sudan showed that some sorghum 
genotypes mature early and have high yields and 
are resistant to drought and are adaptable to wide 
range of environments. These results concur with 
the findings of Jabereldar et al., (2017) that, a 

sorghum genotype was found to be tolerant to 
induced drought through irrigation at university 
of Kordofan, Sudan. The implications of the 
results are that there are some sorghum 
genotypes with significantly high water use 
efficiency in semi-arid lands and are adaptable to 
drought conditions and can be introduced to 
sorghum breeding program to develop nitrogen 
and water efficient sorghum for semi-arid lands. 
These results can be generalized beyond 
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Katumani in other semi-arid lands because 
Katumani is one of dry land representative site in 

semi-arid lands of eastern Kenya. 

Conclusion   

Nitrogen application at 6.5 and 32.5 kg N ha-1 
significantly increased WUE of sorghum 
genotypes in semi-arid Machakos by 12 and 25% 
on biomass and 17and 35% grain production kg 
ha-1 mm-1 of rainfall in SR 2020 and 72 and 170% 
on biomass and 77% and 196% grain production 
ha-1 mm-1 in SR 2018. There are six sorghum 
genotypes (Kitaa kya Ivui A6 (Andrew Malai), 
Kitui Rasta A4 (Malia Musomba), Kilifi local V A7 
(197), Kivila Kya Ivui MKN A2 (Rhoda Wayua 
Muthusi), Siaya Nyaktos A5 (177) and Taita Taveta 

local A10 (150) with significantly large grain yield 

and WUE than Gadam and are recommended to 
farmers and incorporation in breeding 
programme for development of water efficient 
drought resistant sorghum. Sorghum genotype 
total dry matter yield and grain yield in semi-arid 
regions are significantly correlated to WUE of 
sorghum and can be used as indicator of drought 

tolerant sorghum selection in the region. 
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