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Abstract 
 
Resonant nuclei of a Mössbauer absorber, interacting with the recoil free emitted radiation from a 

Mössbauer source, can re-emit it without recoil, leading to nuclear-resonant scattering. During the nuclear 

resonance scattering in the Mössbauer absorber, intermediate states which are combinations of nuclear 

excited states and electromagnetic radiation (gamma radiation) states are produced. These states are called 

nuclear polaritons. In this paper, a description of the nuclear polariton inside a Mössbauer absorber is 

presented by adapting the quantum model previously developed by Heitler, Harris and Hoy, called “the 

coherent paths model”. This model allows the calculation of all spatial and temporal properties of the 

nuclear excited states as well as the electromagnetic radiation present inside a resonant absorber. The 

thickness of the absorber is modeled using a parameter N. The nuclear polariton results then from the 

magnetic dipole interaction between the quantified electromagnetic radiation and the resonant nuclei of 

the absorber. It is an entangled state, composed by the excitation of the nuclei (exciton) and the 

electromagnetic field. The evolution of the nuclear exciton, both as a function of time and as a function of 

the position of the resonant nuclei in the absorber, is studied. This constitutes the nuclear part of the 

polariton. The field associated with the gamma radiation inside the absorber is studied also as a function 

of position in the absorber and as a function of time, which is the field part of the polariton. Using the 

purely quantum coherent paths model, we find out that the energy of the polariton inside the absorber 

oscillates between the nuclear excitation and the field of electromagnetic radiation. Nuclear polariton study 

is then a potential method for probing matter at the subatomic scale. 

 

Introduction

Since the discovery of the Mössbauer effect in 
1958 (Mössbauer, 1958) , the so-called Mössbauer 
spectroscopy has been (Greenwood and Gibb, 
1971). In this spectroscopy, resonant nuclei 
absorb and re-emit the radiation without recoil 

leading to nuclear-resonant scattering (NRS). 
During the NRS in a Mössbauer absorber, 
complex intermediate states are formed, 
containing the nuclear excitation with all 
resonant nuclei involved and the electromagnetic 
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radiation. This state is called the nuclear 
polariton. The collective nuclear state containing 
all nuclei is called the nuclear exciton. 

Nuclear polaritons in Mössbauer spectroscopy 
have aroused the interest of researchers since it 
was highlighted by M. Haas (Haas, 2007; Haas et 
al., 1988) and, following him, by other researchers 
(Smirnov et al., 2005, 2007) . 

In this paper, we propose a description based on 
the quantum model of the so called coherent 
paths, which was developed by Hoy (Harris, 
1961; Heitler, 1984; Hoy, 1997). The model has 
been successfully used to study NRS in the 
forward direction for various cases (Hoy, 1997, 
2001; Hoy et al., 2001; Odeurs and Hoy, 2007). 

The model is based on a detailed microscopic 
description to study the interaction of recoil-free 
gamma radiation with resonant nuclei embedded 
in a solid state material. Other theoretical 
approaches, such as the semi-classical optical 
model (Kagan et al., 1979), have been used to 
study the same physical system. It has been 
shown (Hoy and Odeurs, 2009) that the coherent 
path model leads to the same numerical results as 
the semi-classical optical model for a synchrotron 
radiation excited absorber. For the radioactive 
case, Harris (Harris, 1961) showed that the results 
of the coherent path model agree with those of 
the semi-classical optical model (Hoy et al., 2001) 

Although the two models are completely 
different, they lead to equivalent results, 
meaning that either one could be used to analyse 
experimental data. 

Materials and methods 

Nuclear resonant forward scattering 

Schrödinger equation for the complete system 

The evolution of the global system consisting of a 
source nucleus, resonant absorber nuclei and 
gamma radiation will be investigated. The 
hamiltonian of this system is: 

𝐻 = 𝐻𝑛 + 𝐻𝑐 + 𝐻𝐷𝑀   (1) 

where 𝐻𝑛 corresponds to the nuclear states, 𝐻𝑐 to 
the gamma radiation field and 𝐻𝐷𝑀 represents the 
interaction between the nuclei and the field. 

The hamiltonian is divided into: 𝐻0 
corresponding to the nuclear states and the free 
radiation field taken as plane waves and 𝐻𝐷𝑀 

which is responsible for the transitions between 
eigenstates |𝜙⟩ of 𝐻0 allowing nuclei to absorb or 
emit a radiation. So, we have: 𝐻 = 𝐻0 + 𝐻𝐷𝑀. 

The state |𝜓(𝑡)⟩ of the system can be expressed as 
follows: 

|𝜓(𝑡)⟩ = ∑ 𝑎𝑚

𝑚

(𝑡)𝑒−
𝑖𝐸𝑚𝑡

ℏ |𝜙𝑚⟩                            (2) 

where |𝜙𝑚⟩ is an eigenstate of the undisturbed 

system. 

We have to solve the time-dependent 
Schrödinger equation: 

 (𝐻0 + 𝐻𝐷𝑀)|𝜓(𝑡)⟩ = 𝑖ℏ
𝑑

𝑑𝑡
|𝜓(𝑡)⟩                        (3) 

Substituting |𝜓(𝑡)⟩ by its expression given by (2) 
in (3) and considering that  

𝐻0|𝜙𝑚⟩ = 𝐸𝑚|𝜙𝑚⟩, we have: 

𝑖ℏ (∑
𝑑𝑎𝑚(𝑡)

𝑑𝑡
𝑒−𝑖(𝐸𝑚

𝑡
ℏ

)

𝑚

|𝜙𝑚⟩)

= ∑ 𝑎𝑚(𝑡)
𝑚

𝑒−𝑖(𝐸𝑚
𝑡
ℏ

)
𝐻𝐷𝑀|𝜙𝑚⟩                            (4) 

Projecting this equation on any eigenstate, say 

|𝜙𝑝⟩, of 𝐻0 we have: 

𝑖ℏ
𝑑𝑎𝑝(𝑡)

𝑑𝑡

= ∑ 𝑎𝑚(𝑡)
𝑚

𝑒𝑖(𝜔𝑝−𝜔𝑚)𝑡⟨𝜙𝑝|𝐻𝐷𝑀|𝜙𝑚⟩              (5) 

where 𝜔𝑝 =
𝐸𝑝

ℏ
 and 𝜔𝑚 =

𝐸𝑚

ℏ
. 

We will specify now the initial condition of the 
problem. By experimental approach, the solution 
𝑎𝑝(𝑡) of this equation has a physical meaning 

only for 𝑡 ≥ 0. For analytical reasons, we extend 
the solution of the system of coupled equation (5) 
to the negative time axis by adding an 
inhomogeneous term that takes into account the 
jump of 𝑎ℓ(𝑡) (we associate the index ℓ to the 
eigenvalue of the system at t = 0). The solution of 
the equation for the amplitude associated with 
the initial state jumps abruptly from 0 to 1. So, in 

the vicinity of 𝑡 = 0, 
𝑑𝑎ℓ(𝑡)

𝑑𝑡
 behaves like a delta 

function, 𝛿(𝑡). This jump is added to the 
expression (5) to give the equation below: 
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𝑖ℏ
𝑑𝑎𝑝(𝑡)

𝑑𝑡
= ∑ 𝑎𝑚(𝑡)

𝑚

𝑒𝑖(𝜔𝑝−𝜔𝑚)𝑡⟨𝜙𝑝|𝐻𝐷𝑀|𝜙𝑚⟩

+ 𝑖ℏ𝛿𝑝ℓ𝛿(𝑡)                         (6) 

From (6) follows that 𝑎𝑝 (𝑝 ≠ ℓ) is continuous at 

t = 0, considering the fact that only 𝑎ℓ makes a 

jump. 

To solve (6) we introduce a Fourier 
transformation as defined in references (Heitler, 
1984; Hoy, 1997). 

After some calculations we have: 

(𝜔 − 𝜔𝑝)𝐴𝑝(𝜔) = ∑ 𝐴𝑚(𝜔)
⟨𝜙𝑝(0)|𝐻𝐷𝑀|𝜙𝑚(0)⟩

ℏ
𝑚

+ 𝛿𝑝𝑙                                           (7) 

Dividing expression (7) by (𝜔 − 𝜔𝑝), we have a 

discontinuity in the right-hand side for 𝜔 = 𝜔𝑝. 

So, we have a pole in the complex plane of 𝜔. 
However, in order to have 𝑎𝑝(𝑡) = 0 for all 

negative values of t, 𝐴𝑝(𝜔) must have a pole only 

in the lower half of the complex plane, this to 
guarantee the causality (Heitler, 1984). To ensure 
this, (7) is rewritten as follows: 

(𝜔 − 𝜔𝑝 + 𝑖𝜀)𝐴𝑝(𝜔)

= ∑ 𝐴𝑚(𝜔)
⟨𝜙𝑝(0)|𝐻𝐷𝑀|𝜙𝑚(0)⟩

ℏ
𝑚

+ 𝛿𝑝𝑙                                             (9)  

This system of equations will be specified in 
section 2.3 to study the nuclear scattering 
problem. The number of effective nuclei, N, is 

related to the thickness parameter 𝛽 = 𝑁0𝑓𝜎0𝑑 
(Hoy, 1997) where 𝑁0 is the number of resonant 
nuclei per volume unit, 𝑓 is the recoilless fraction, 
𝜎0 is the maximum cross section evaluated at 
resonance and 𝑑 the thickness of the sample. 𝑁 

and 𝛽 are related by : 𝑁 =
1

2

𝛽

𝑓

Γ

Γ𝑟
  (Hoy, 1997) 

where Γ and Γ𝑟 are respectively the total line 
width and radiative width of the excited state. 

Fundamental coupled equations 
Consider 57Fe in the first excited state at 14.4 keV 
above the ground state. The time t = 0 is defined 

by the formation of the state of 14.4 keV, which 
can be determined precisely by the detection of 
the 122 keV precursor. The 14.4 keV level of 57Fe 
can decay according to two different ways: 
gamma photon production or electron 
conversion, where the nuclear energy of the 

excited state is transferred directly to an atomic 
electron. For the 14.4 keV transition in the 57Fe, 
the electron conversion process is more or less 
nine times more likely than the gamma transition 
(Greenwood and Gibb, 1971). 
At t = 0, there is an excited source nucleus, all the 

resonant absorber nuclei are in the ground state 
and there is no gamma radiation present. We 
study the scattering problem for these nuclei by 
restricting the calculations to the forward 
scattering. Five amplitudes as defined in (Hoy, 
1997): 𝐴(𝜔), 𝐵𝑘(𝜔), 𝐶𝑚(𝜔), 𝐷𝑝(𝜔, 𝐸𝑚𝑝(𝜔) will be 

considered. 

Assuming that at time t = 0, the source nucleus is 

excited, and substituting these amplitudes into 
(9) gives the following set of coupled linear 
equations (Hoy, 1997): 

(𝜔 − 𝜔0 + 𝑖𝜀)𝐴(𝜔)

= 1 + ∑
𝐵𝑘(𝜔)𝐻𝑘

ℏ
𝑘

+ ∑
𝐷𝑝(𝜔)𝐻𝑝

ℏ
𝑝

                          (10) 

(𝜔 − 𝜔𝑘 + 𝑖𝜀)𝐵𝑘(𝜔)

=
𝐴(𝜔)𝐻𝑘

∗

ℏ
+ ∑

𝐶𝑚(𝜔)𝐻𝑘
∗

ℏ
𝑚

𝑒−𝑖𝑘𝑥𝑚                         (11) 

(𝜔 − 𝜔0
′ + 𝑖𝜀)𝐶𝑚(𝜔)

= ∑
𝐵𝑘(𝜔)𝐻𝑘

ℏ
𝑚

𝑒𝑖𝑘𝑥𝑚

+ ∑
𝐸𝑚𝑝(𝜔)𝐻𝑝

ℏ
𝑝

𝑒𝑖(
𝑝
ℏ

)𝑥𝑚                                            (12) 

(𝜔 − 𝜔𝑝 + 𝑖𝜀)𝐷𝑝(𝜔)

=
𝐴(𝜔)𝐻𝑝

∗

ℏ
                                   (13) 

(𝜔 − 𝜔𝑝 + 𝑖𝜀)𝐸𝑚𝑝(𝜔)

=
𝐶𝑚(𝜔)𝐻𝑝

∗

ℏ
𝑒−𝑖(

𝑝
ℏ

)𝑥𝑚                  (14) 

where 𝐻𝑘 and 𝐻𝑘
∗ are the matrix elements 

corresponding to absorption and emission of a 
photon, respectively. Analogously, 𝐻𝑝 and 𝐻𝑝

∗ are 

the matrix elements corresponding to absorption 
and emission of a conversion electron, 
respectively. 

The solution of the scattering problem is obtained 
by solving this set of coupled linear equations 
(Hoy, 1997). For 𝐴(𝜔), we have: 
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𝐴(𝜔) =
1

𝜔 − 𝜔0 + 𝑖
Γ

2ℏ

                                         (15) 

where 
Γ

2ℏ
 is the total width characterising the 

lorentzian distribution of the excited-level energy 
of 14.4 keV. All other amplitudes can be found in 
(Hoy, 1997). These coefficients will be utilized to 
study the excitation of the nuclei which 
constitutes the nuclear part of the polariton. For 
 𝐶𝑚(𝜔), we have: 

𝐶𝑚(𝜔) = −𝑖
Γ𝑟

2ℏ

𝑒𝑖(
𝜔
𝑐

)𝑥𝑚𝐴(𝜔)

(𝜔 − 𝜔0
′ + 𝑖

Γ
2ℏ

)
× 

        [1 − 𝑖
Γ𝑟

2ℏ

1

𝜔 − 𝜔0
′ + 𝑖

Γ
2ℏ

]

𝑚−1

           (16)  

where Γ𝑟 is the radiative width. For 𝐵𝑘(𝜔), we 
have: 

𝐵𝑘(𝜔) =
𝐻𝑘

∗

ℏ

1

(𝜔 − 𝜔0 + 𝑖
Γ

2ℏ
) (𝜔 − 𝜔𝑘 + 𝑖𝜀)

× 

         [1 + ∑ 𝑒𝑖(
𝜔
𝑐

−𝑘)𝑥𝑚+1𝛼(𝛼 + 1)𝑚

𝑁−1

𝑚=0

]                   17) 

where 𝛼 = −𝑖
Γ𝑟

2ℏ

1

(𝜔−𝜔0
′ +𝑖

Γ

2ℏ
)
  

Before using the Fourier transform to go back to 
the time domain, we can express 𝐵𝑘(𝜔) in a 
symbolic form by examining the equation (17). 
We have: 

𝐵𝑘(𝜔) = 𝐵𝑘
𝑠𝑜𝑢𝑟𝑐𝑒(𝜔)

+ ∑ 𝐵𝑘,𝑚
𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟(𝜔)

𝑁−1

𝑚=0

             (18) 

The first term is due to the source alone while the 
summation term describes the effect due to each 
absorber nucleus according to the value of m 

which does not only indicate the position of the 
nucleus considered in the absorber but which 
also takes into account the effect of the nuclei in 
front of the nucleus situated at 𝑥 = 𝑥𝑚. By Fourier 
transform, we have: 

𝑏𝑘(𝑡)

= −
1

2𝜋𝑖
∫ 𝐵𝑘(𝜔)𝑒𝑖(𝜔𝑘−𝜔)𝑡𝑑𝜔

+∞

−∞

                       (19) 

which formally gives, using expression (18): 

𝑏𝑘(𝑡) = 𝑏𝑘
𝑠𝑜𝑢𝑟𝑐𝑒(𝑡) + ∑ 𝑏𝑘,𝑚

𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟(𝑡)

𝑁−1

𝑚=0

                (20) 

This amplitude allows us to find the expression 
of the field of gamma radiation inside the 
absorber. 

Amplitude of the radiation field for recoil-free 
processes 

Using lengthy calculations, Hoy (Hoy, 1997) 
managed to find the amplitude of the transmitted 
radiation. To do so, Hoy considered the radiation 
as a superposition of plane waves, each one with 
a coefficient 𝑏𝑘(𝑡), which can be calculated 
according to the lines explained above.  

At resonance, 𝜔0 = 𝜔0
′ , the total amplitude of the 

radiation leaving the absorber is given by the 
expression:  

𝜓𝑟(𝑡′)

= 𝜓𝑟
𝑠𝑜𝑢𝑟𝑐𝑒(𝑡′) [1 + ∑ (

𝑁

𝑛
) (−

Γ𝑟𝑡′

2ℏ
)

𝑛
1

𝑛!

𝑁

𝑛=1

]           (21) 

where 𝜓𝑟
𝑠𝑜𝑢𝑟𝑐𝑒(𝑡′) = 𝑒−𝑖(𝜔0−𝑖

Γ

2ℏ
)𝑡′

 and 𝑡′ is the time 
measured from the moment of the formation of 

the first excited level in the source (𝑡′ = 𝑡 −
𝑥

𝑐
). 𝑥 

is a position behind the absorber.  

If only a part of the absorptions and reemissions 
of the photons occurs without recoil, expression 
(21) will have to be modified. Only for the 
processes without recoil, it is impossible to 
distinguish the path followed by each photon 
towards the detector. Thus all the paths must be 
added in a coherent way: all the amplitudes must 
be added to have the amplitude of the radiation 
which reaches the detector. Therefore, we 
multiply the right-hand side of the equation (21) 

by 
Γ𝑟

2
 and by the recoil-free fraction 𝑓. 

So the amplitude of the radiation field reaching 
the detector is: 

𝜓𝑟(𝑡′) = √
𝑓Γ𝑟

2ℏ
𝑒

−𝑖(𝜔0−𝑖
Γ

2ℏ)
𝑡′

[1

+ ∑ (
𝑁

𝑛
)

𝑁

𝑛=1

(−
𝑓Γ𝑟𝑡′

2ℏ
)

𝑛
1

𝑛!
]      (22) 
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Results  

Nuclear polaritons 

Temporal and spatial behaviour of the nuclear part of 
the polariton 

To study the excitation of nuclei, we start from 
the expression (16) of 𝐶𝑚(𝜔). We use the Fourier 
transformation to have this amplitude of 
excitation of the nuclei as a function of time. At 
resonance, 𝜔0 = 𝜔0

′  and considering the recoil 
free fraction 𝑓 as in equation (22), it can be shown 
that 𝐶𝑚(𝜔) can be written as: 
𝐶𝑚(𝜔)

= ∑ (−𝑖
𝑓Γ𝑟

2ℏ
)

𝑛+1𝑚−1

𝑛=0

(
𝑚 − 1

𝑛
)

𝑒𝑖(
𝜔
𝑐

)𝑥𝑚

( ω − 𝜔0 + 𝑖
Γ

2ℏ
)

𝑛+2   (23)  

It can be shown that: 

𝐶𝑚(𝑥𝑚 , 𝑡)

= ∑ (
𝑚 − 1

𝑛
)

𝑚−1

𝑛=0

(−1)𝑛+1 (
𝑓𝛤𝑟

2ℏ
)

𝑛+1 1

(𝑛 + 1)!
[𝑖 (

𝑥𝑚

𝑐

− 𝑡)]
𝑛+1

𝑒𝑖[(
𝑥𝑚

𝑐
−𝑡)(𝜔0−𝑖

Γ
2ℏ

)+𝜔𝑚𝑡]                      (24) 

where we have added the apparently explicit 
dependence on 𝑥𝑚, the position of the nucleus m.  

By taking its module, neglecting 𝑥𝑚/𝑐 and by 

considering 𝑒𝑥𝑚Γ/2𝑐ℏ = 1 we have: 

|𝐶𝑚(𝑡)|

=
|
|

∑ (
𝑚 − 1

𝑛
)

𝑚−1

𝑛=0

(−1)2(𝑛+1) (
𝑓𝛤𝑟

2ℏ
)

𝑛+1

×
1

(𝑛 + 1)!
𝑡𝑛+1

|
|

𝑒−𝑡
Γ

2ℏ      (25) 

so that there is no explicit dependence of 𝑥𝑚 
anymore. 

Introducing  
2ℏ

Γ
= 𝜏, 

𝑡

𝜏
= 𝑢, Γ𝑟 =

Γ

10
  equation (26) 

becomes: 

|𝐶𝑚(𝑢)|

= | ∑ (
𝑚 − 1

𝑛
)

𝑚−1

𝑛=0

(−1)𝑛+1)
1

(𝑛 + 1)!
(

𝑓𝑢

10
)

𝑛+1

| 𝑒−𝑢    (26) 

This expression informs us about the excitation of 
the nuclei as a function of time and implicitly the 
position of the nucleus m. In figure 2, we have 

chosen 𝑓 = 1. 

 

 

    

(a)                                                                                                         (b) 

Figure 1. (a) Amplitude of probability of excitation of 1 (solid line), 2 (filled circles), 5 (stars symbols), 10 (dotted), 
15 (filled triangles) and 20 (discontinuous lines)) nuclei as a function of time. (b) Amplitude of excitation of the 
nuclei as a function of the position in the absorber for u equal to 0.5 (solid line), 1 (filled circles), 1.5 (dotted line), 

2 (filled rectangles) and 3.5 (discontinuous line). 

 

Temporal and spatial behaviour of the field part of the 
polariton 

Let us examine the amplitude of the 
radiation field as a function of time and 
position at resonance. From the expression 
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(22), neglecting the normalization terms, the 
amplitude of the field is: 

𝜓𝑟(𝑡′) = 𝑒
−𝑖(𝜔0−𝑖

Γ
2ℏ)

𝑡′

[1

+ ∑ (
𝑁

𝑛
)

𝑁

𝑛=1

(−𝑓
Γ𝑟𝑡′

2ℏ
)

𝑛
1

𝑛!
]     (27) 

In terms of u, we end up with the expression 

(28), which gives the amplitude of the field at 
a position between the absorber and the 
detector: 

|𝜓𝑟(𝑢)|

= |[1 + ∑ (
𝑁

𝑛
)

𝑁

𝑛=1

(−
𝑓𝑢

10
)

𝑛 1

𝑛!
]| 𝑒−𝑢            (28) 

This equation will be used to study the field 
inside the absorber by varying N which is 

related to the thickness of the absorber. If we 
take 𝑁 = 𝑛, we would have the field at the 
position of the nth nucleus in the absorber. We 

utilize then the expression to calculate the 
field amplitude everywhere inside the 
absorber.

 

   

                              (a)                                                                                     (b) 

Figure 2. (a) Comparison of the amplitudes of the field as a function of time (u) for no nuclei (solid line), 1 nucleus 
(filled circles), ten nuclei (filled triangles) and fifty nuclei (discontinuous line), (b) Amplitude of the field as a 
function of the position in the absorber for u = 0 (solid line), u = 0.5 (filled triangles), u = 2 (discontinuous line). 

Temporal and spatial behaviour of the polariton 
In the figures 3 and 4, we show the excitation 
amplitude of the nuclei as a function of  time as 
well as the amplitude of the field as a function 
of time (figure 3) and as a function of the 
position (figure 4). 

Discussion 

Figure 1(a) illustrates the excitation amplitude of 
the nuclei as a function of time, the time being 
varied by fixing m (the position) for 1, 2, 5, 10, 15 
and 20 nuclei. We notice that for 10, 15 and 20 
nuclei we have a discontinuity of the derivative 
because of the absolute value. This discontinuity 
has no physical meaning but the function is 
continuous. The figure shows that the excitation 
is maximum between u = 0.5 and u = 1.5 for all 
the numbers of nuclei considered. Figure 1(b) 
represents the excitation amplitude of the nuclei 

as a function of the position in the absorber. The 
time (u = 0.5, 1, 1.5, 2 and 3 units) is fixed while 
the position varies. For an increasing number of 
nuclei, the excitation decreases for small values 
of u. 

Figure 2(a) shows the amplitude of the field 
versus the time for no nucleus, 1, 10, 15 and 50 
nuclei; whereas figure 2(b) represents the 
amplitude of the field versus the position for u = 
0, u = 0.5 and u = 2. The field strength at a 

particular nucleus depends on the number of 
nuclei in front of it.  

For u = 0, all absorber nuclei have a probability 
amplitude equal to 1 of being excited. In reality it 
is 1/𝑁 but it has been normalized to 1. For a time 
u < 1, there is a decrease as shown in the figure 
2(b) when u = 0.5. For a long time (u > 1), the 

amplitude decreases rapidly and increases again 
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if we progress in the absorber because of the 
photons coming from the decaying of nuclei in 

the absorber. This is clearer in the same figure 
2(b) for u = 2. 

 

 

(a)                                                                                  (b) 

Figure 3. (a) Polariton as a function of time for a single absorber nucleus (b) Polariton as a function of time for N 
= 10. 

 

Figures 1 and 2 show two effects: the so-called 
speed-up and the dynamical beats. For a high 

number of resonant nuclei there is a decay of 
the gamma radiation wave function that is 
faster than simple exponential decay. This 
phenomenon is called speed-up (Hoy, 2001). 
For a high number of resonant nuclei, the 
gamma radiation wave function shows also an 
oscillatory time behaviour. This effect is called 
dynamical beats (Hoy, 2001). The coherent-
path model shows that the speed-up and 
dynamical beating effects are a direct 

consequence of the interference of all quantum 
mechanical amplitudes involved in the 
multiple scattering processes. In the expression 
(28) there is a factor 𝑒−𝑢, which represents 
simple exponential decay. In the square 
brackets there is a polynomial of 𝑡′, with a 
succession of + and – signs. It is shown in (Hoy, 
2001) that this succession of terms with positive 
and negative signs can explain all details of the 
speed-up and the dynamical beats effects.  
 
Dependence on time 

Figure 3(a) represents polaritons as a 

function of time for one absorber nucleus. 
The amplitude of the field decreases (solid 
line) while the amplitude of excitation 
(dashed line) increases for u < 1, reaches its 
maximum at u ≈ 1 and decreases then slowly. 

Figure 3(b) represents the polariton as a 
function of time for 10 nuclei. If we compare 
the two cases (1 nucleus and 10 nuclei) of 
the polariton as a function of time, we see 
that its nuclear excitation part is less 
pronounced for 10 nuclei compared with 
that of the case of a nucleus. 
 
Dependence on the position 
The dashed lines of figure 4 represent the 
amplitude of the nuclear excitation, the solid 
line represents the amplitude of the field. 
Figure 4(a) represents the polariton 
behaviour depending on the position for u = 
0.8; Figure 4(b) represents the polariton 
behaviour depending on the position for u = 

1 while Figures 4(c) represents the polariton 
behaviour depending on the position for 
u = 2. 
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          (a)     (b)     (c) 

Figure 4. (a) Polariton depending on the position for u = 0.8 (b) Polariton depending on the position for u = 
1 (c) Polariton depending on the position for u = 2. 

 

Conclusion 

The radiation emitted by a Mössbauer 
source interacts with N effective Mössbauer 

nuclei in a resonant absorber before leaving it. 
Solving the forward scattering problem by the 
coherent path model allowed us to describe the 
properties of the resulting nuclear polariton. 
The time evolution of the excitation amplitude 
of the nuclei in the absorber as well as the time 

and space evolution of the radiation field 
inside the absorber have been investigated. 
The polariton nucleus + radiation field inside the 

absorber oscillates between the nuclear 
excitation and the field of electromagnetic 
radiation. The details of these behaviours can 
be understood as interference between all 
quantum mechanical amplitudes relative to all 
possible scattering events in the forward 
direction. 
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