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Abstract 
 
New solution for the Einstein field equations satisfying a neutral anisotropic quark star object is generated. 

The quark linear equation of state together with the conformal Killing vector (CKV) are used to investigate 

the behavior and properties of quark stars. The CKV plays an important role in providing the relationship 

between the two gravitational potentials. The process of combining the CKV and an equation of state has 

currently led to new realistic solutions. In obtaining the matter variables, one of the gravitational potentials 

is specified on physical grounds to generate compact star model with physical significance. The generated 

quark star model undergoes several physical tests for the validity and acceptability. Several realistic 

physical conditions are found to be satisfied. The model stability in terms of the adiabatic index and 

equilibrium of the physical forces is satisfied. The behavior of the mass-radius relationship and the surface 

red shift are well obeyed. Their parameters values are found to be compatible with observations. The 

gravitational potentials are continuous throughout the interior of the star, and the model's energy 

conditions are satisfied as well. Quark star models that admit conformal symmetry in the absence of charge 

are missing in the existing literature. 

Introduction 

Equations of state have been fruitful in describing 
the material compositions within relativistic 
stars. After the massive stars undergone 
evolution when the nuclear forces fail to balance 
with the natural gravitational forces, several 
compact objects are formed including white 
dwarfs, neutron stars, black holes and gravastars 
(Joshi, 2007). The nature of material compositions 
within these objects are best explained by 
equations of state including the quadratic, 
polytropic, Van der Waals and linear equations of 
state. A number of studies on the useful of 
quadratic equation of state in generating 

relativistic models with physical significance 
have been carried out by various researchers. 
Sunzu and Thomas (2018) generated realistic 
exact solutions for uncharged star model with 
vanishing pressure anisotropy using a quartic 
equation of state. Sunzu and Mathias (2022) used 
a quadratic equation of state to study the 
behavior and properties of a neutral star with a 
choice of the gravitational potential that regains 
several models found by other researchers. Pant 
and Fuloria (2021) conducted a comparative 
analysis of a charged anisotropic compact stellar 
model by considering quadratic and linear 
equations of state. Models with polytropic 
equations of state have been studied by several 
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researchers. Afzal and Feroze (2024) generated 
new classes of exact solutions for charged 
anisotropic compact stars by varying different 
polytropic indices where a comprehensive 
analysis of a neutron star PSR J0740+6620 was 
provided. Thirukkanesh et al. (2020) analyzed the 

behavior of anisotropic compact star exhibiting a 
paraboloidal geometry with a polytropic 
equation of state where the radial pressure found 
to dominate the tangential pressure throughout 
the interior of the star.  Van der Waals equations 
of state have been used by various researchers to 
generate realistic compact star models with 
physical significance (Ditta et al., 2023; Errehymy 
et al., 2022). Relativistic studies on linear 

equations of state have been conducted by 
various researchers.  Patel et al. (2023) generated 

exact solutions of Einstein’s field equations 
compatible with several stars like 4U 1820-30, 
PSR J1903+327, EXO 1785-248, LMC X-4 by 
considering a linear equation of state with a 
surface density term. Jape et al. (2023a) 

investigated the behavior and properties of 
charged anisotropic compact stars with a 
conformal Killing vector and a linear equation of 
state where a number of solutions found by other 
researchers in the literature are contained.  
 
The role of pressure anisotropy in investigation 
the behavior of compact star models has been an 
important area of consideration. As first pointed 
out by Herrera and Santos (1997), it has been 
found that various factors contributed to the 
sources of pressure anisotropy in relativistic 
fluids. The presence of strong electromagnetic 
field in these highly dense fluids may influence 
pressure anisotropy (Martinez et al., 2003; Usov, 

2004). Transitions in phases within compact 
objects may influence pressure anisotropy as well 
(Herrera and Nunez, 1989; Sokolov, 1980).  It has 
been also found by Kippenhahn and Weigert 
(1990) that the presence of type-3A superfluid in 
relativistic fluid can be the source of anisotropy. 
The effects of pressure anisotropy within 
relativistic fluids have been analyzed in various 
studies. Ruderman (1972) observed that pressure 
anisotropy can influence higher density values (>

1015 𝑔𝑐𝑚−3) within relativistic fluids. Herrera 
and Santos (1997) found the influence of pressure 
anisotropy on the stability of compact stars. 
Bowers and Liang (1974), and Dev and Gleiser 
(2002) observed variations of mass, surface 

redshift and mass radius ratio for fluid spheres 
with anisotropic nature. Other effects of pressure 
anisotropy on relativistic objects are found in 
various researches (Herrera, 2020; Chan et al., 
1993; Cosenza et al., 1981). This study aims to 

develop a neutral realistic quark star model with 
anisotropic nature throughout the interior of the 
star.  
 
Several approaches have been used by various 
researchers in analyzing the behavior and 
properties of relativistic compact objects. The use 
of embedding of dimensions proved to be 
efficient in investigating these objects. Mathias et 
al. (2021) used embedding of dimensions to 

generate a charged anisotropic model with a 
generalized measure of anisotropy that contains 
several models found by other researchers. 
Maurya et al. (2021) obtained a solution of 

Einstein-Maxwell field equations via embedding 
of dimensions for a charged anisotropic star 
describing several compact objects like PSR 
J1903+327; Cen X-3; EXO1785-248 and LMCX-4. 
This was done for a massive scalar field under the 
Brans-Dicke gravity. The modified theories of 
gravitation have been used to study compact 
objects as well. The 𝑓(𝑅, 𝑇) theory plays an 
important role in understanding the behavior of 
compact objects. Harko et al. (2011) introduced 

this theory to obtain the gravitational field 
equations in metric form where by an arbitrary 
function of the Ricci scalar and the stress-energy 
tensor was used to define the gravitational 
Lagrangian. Tangphati et al. (2023) used the 
higher dimensional modified (𝑅,𝑇) 
gravity theory to study charged strange quark 
stars by assuming a linear relationship between 
the fluid energy density and charge density for 
numerical computation purposes. Other 
modified gravity theories like Einstein-Gauss-
Bonnet (Jasim et al., 2021; Maurya et al., 2020; 
Hansraj et al., 2019) and 𝑓(𝑅) gravity (Nashed 
and Capozziello, 2021; Abbas et al., 2015; Ilyas 
and Ahmad, 2024) have been useful in studying 
behavior and properties of compact stars.  
 
Several studies have considered the approaches 
of using the quark linear equation of state and the 
conformal symmetry separately. Models of 
compact fluid spheres admitting conformal 
symmetry have been investigated by several 
authors. Jape et al. (2021) obtained a generalized 
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compact star model by solving the conformal 
condition through specifying specific forms for 
the electric charge and the measure of anisotropy 
where several famous known models of Finch 
and Skea (1989) and Vaidya and Tikekar (1982) 
are regained. Jape et al. (2023b) used conformal 

Killing vector to generate a charged anisotropic 
solution for compact star without employing an 
equation of state. Maurya et al. (2019) applied the 

conformal Killing vector to investigate the 
behavior of a neutral star that satisfies various 
physical relativistic conditions. Christopher et al. 
(2024) generated solutions to the Einstein-
Maxwell field equations for a charged conformal 
star with a quadratic equation of state. Studies on 
quark matter with linear equations of state are 
found in various investigations (Cheng et al., 
2010; Klahn et al., 2007; Rincon et al., 2023; Mak 

and Harko, 2002). This paper is motivated to 
investigate the behavior and properties of a 
strange quark star with a linear equation of state 
and conformal symmetry. A linear equation of 
state for quark matter and conformal Killing 
vector are simultaneously used to obtain the 
gravitational potentials and other matter 
variables for analysis. The study on uncharged 

strange quark star that admit conformal 
symmetry is missing in the current observations. 
This paper is organized in the following fashion: 
in the next section we provide the materials and 
methods used. In Section 3 we provide the results 
of our investigation, and the discussion of the 
results is given in Section 4. Section 5 provides the 
study conclusion while the last section outlines 
the study recommendations.  

Materials and Methods 

This section outlines important materials used in 
this study as well as the methods of approach.  
The important equations governing the 
investigation are clearly presented and 
explained. This provides foundations in 
generating the required model for analysis.  

Einstein Field Equations 
The interior (Schwarzschild) and exterior 
(Reissner-Nordstrom) lines elements are used in 
formulating the Einstein field equations for a 
highly gravitating uncharged star characterized 
by high density and pressures. These are 
respectively given by the equations.  

 

             𝑑𝑠2  =   𝑟2(𝑑𝜑2  + 𝑠𝑖𝑛2 𝜑𝑑𝜃2) + 𝑒2𝜆𝑑𝑟2 − 𝑒2𝜈𝑑𝑡2                                             (1) 
and  

        𝑑𝑠2 = 𝑟2(𝑑𝜑2  +  𝑠𝑖𝑛2 𝜑𝑑𝜃2) + (1−
2𝑀

𝑟
)
−1

𝑑𝑟2 − (1−
2𝑀

𝑟
)𝑑𝑡2,                             (2) 

where 𝜈 and λ are gravitational potentials and 𝑀 stands for the mass of the compact obect. To obtain the 
field equations for the study, we present the Einstein and the energy momentum tensors as  

                                        𝐺𝛼𝛽 = 𝑅𝛼𝛽 −
1

2
𝑅𝑔𝛼𝛽 ,                                                                                        (3)                                                 

and  
                        𝑇𝛼𝛽 = (𝜌 + 𝑝𝑡) 𝑢𝛼𝑢𝛽  +  𝑝𝑡  𝑔𝛼𝛽 + (𝑝𝑡 − 𝑝𝑟)𝑣𝛼𝑣𝛽 ,                                                      (4) 

 
respectively, where 𝜌, 𝑝𝑡 and 𝑝𝑟  are respectively 
the fluid energy density, the transverse  pressure, 
and the radial pressure. The quantity 𝑔𝛼𝛽 stands 

for the metric tensor. Combining equations (1), 

(2), (3) and (4) with some mathematics, the 
Einstein field equations for a neutral star model 
are obtained and given by 
   

                                                  𝜌(𝑟) = 𝑒−2𝜆 (
2𝜆′

𝑟
−

1

𝑟2
) +

1

𝑟2
 ,                                                                (5a) 

                                                 𝑝𝑟(𝑟) = 𝑒
−2𝜆 (

2𝜈′

𝑟
+

1

𝑟2
) −

1

𝑟2
 ,                                                                (5b) 

                                                 𝑝𝑡(𝑟) = 𝑒
−2𝜆 (𝜈′′ + 𝜈′

2
− 𝜈′𝜆′ +

𝜈′

𝑟
−

𝜆′

𝑟
).                                             (5c)   

The primes in system (5) indicate the derivatives 
of the respective quantities with respect to the 
radial distance 𝑟. The measure of anisotropy Δ is 
obtained by subtracting equation (5b) from 
equation (5c). When Δ ≠ 0, which happens when 
the tangential pressure is different from the radial 

pressure, we speak about anisotropic compact 
star models. For isotropic models, the radial 
pressure is always the same as the tangential 
pressure.  
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The mass equation for the uncharged fluid star as 
given by Mak and Harko (2003) and Sunzu et al. 

(2014) is defined to be  

                                                   𝑀(𝑟) =
1

2
∫ 𝜌(𝜔)𝜔2𝑑𝜔
𝑟

0
.                                                                       (6) 

 
 
Conformal Symmetry 
We present the conformal Killing vector and 
analyze its importance in simplification of the 
field equations. It is observed that the Einstein 

field equations (5) are highly non-linear and 
therefore difficult to solve. To simplify these 
equations, the conformal Killing vector is 
introduced which helps to provide an important 
relationship between the gravitational metric 
functions. This vector is given by  

 
                                                      𝐿𝑿𝑔𝜶𝜷 = 2𝛾𝑔𝛼𝛽,                                                                 (7)   

 
where 𝑿 is the conformal Killing vector and 𝛾 is 
the conformal factor that preserve the metric of 
space-time. Here 𝐿 is the derivative operator for 
lie algebra on the conformal vector. We consider 

the non-static condition for the conformal vector 
as well as its associated conformal factor as 
outlined in Jape et al., (2021). These are 
respectively given by   

 

                                               𝑋 = 𝛼(𝑡, 𝑟)
𝜕

𝜕𝑡
+ 𝛽(𝑡, 𝑟)

𝜕

𝜕𝑟
,                                                            (8a) 

                                               𝛾 = 𝛾(𝑡, 𝑟).                                                                     (8b) Equation (7) 
can be solved by utilizing the Killing vector (8a) 
and the conformal factor (8b) together with the 

specific associated integrability condition. This 
condition is given by the Weyl tensor  
  

                                                            𝐿𝑿𝐶𝑏𝑐𝑑
𝑎 = 0.                                                         (9) In equation 

(9), 𝐶𝑏𝑐𝑑
𝑎  stand for the non-zero values of the Weyl tensor. Now, using the system of equations (8) with 

condition (9), the vector equation (7) reduces to the highly non-linear differential equation 

                                   𝑒−2𝜆 (𝜈′′ + 𝜈′
2
− 𝜈′𝜆′ +

𝜆′

𝑟
−

𝜈′

𝑟
+

1

𝑟2
) =

(1+𝑘)

𝑟2
.                                           (10) 

 Solving equation (10) yields  

𝑒𝜐 =

{
 
 

 
 𝐴𝑟𝑒𝑥𝑝 (√1+ 𝑘 ∫

𝑒𝜆

𝑟
𝑑𝑟) + 𝐵𝑟𝑒𝑥𝑝 (−√1+ 𝑘 ∫

𝑒𝜆

𝑟
𝑑𝑟) ,             1 + 𝑘 > 0

𝐴𝑟∫
𝑒𝜆

𝑟
𝑑𝑟 + 𝐵𝑟,                                                                                    1 + 𝑘 = 0

𝐴𝑟𝑒𝑥𝑝(√−(1 + 𝑘)∫
𝑒𝜆

𝑟
𝑑𝑟) + 𝐵𝑟𝑒𝑥𝑝 (−√−(1 + 𝑘)∫

𝑒𝜆

𝑟
𝑑𝑟) , 1 + 𝑘 < 0.

                    (11) 

 
In equation (11),  𝐴 and 𝐵 are constant 
parameters. This is an important equation 

relating the two gravitational potentials 𝑒𝜆 and 
𝑒𝜐. It is observed that the specification of the 

gravitational potential 𝑒𝜆 on physical grounds 

can help us to integrate equation (11) for different 
cases and obtain the second gravitational 
potential 𝑒𝜐. It is important to understand that 
when 𝑘 = 0 in equation (11), we then define a 
conformally flat space-time.  

 
The quark equation of state 
 We define the quark linear equation of state for quark matter as  

                                                           𝑝𝑟 =
1

3
(𝜌 − 4𝛾),                                                                    (12) 

where 𝛾 is constant. The quark equation of state 
(12) was also used by various researchers to 
generate realistic models with physical 
significances (Abdalla et al., 2021; Singh et al., 
2021; Mathias et al., 2024). This was done without 

imposing the conformal condition on the space-
time manifold. Jape et al. (2023a) used a general 

linear equation of state and conformal Killing 
vector to investigate the behavior of a charged 
compact star. For this investigation, the quark 
equation of state (12) is treated in the presence of 
the conformal Killing vector to study the 
behavior of uncharged quark star. This helps to 
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generate new realistic exact solutions for 
uncharged quark stars.     
 
Transformation of the field equations and the 
conformal condition 

The field equations (5), the mass function (6) and 
the conformal condition (11) are transformed for 
simplification purposes. This is done by using the 
Durgapal and Bannerji (1983) transformations 
given by  

 

                                        𝑥 = 𝐶𝑟2, 𝑧(𝑥) = 𝑒−2λ,    𝑦2(𝑥) =  𝑒2𝜈 .                                                    (13) 
Mathematical simplification of system (5) through using transformations (13) leads to the system of 
Einstein field equations 

                                                          
𝜌(𝑥)

𝐶
=

1−𝑧

𝑥
− 2�̇�,                                                                        (14a) 

                                                         
𝑝𝑟(𝑥)

𝐶
=

𝑧−1

𝑥
+ 4𝑧

�̇�

𝑦
,                                                                     (14b) 

                                                       
𝑝𝑡(𝑥)

𝐶
= �̇� + 4𝑥𝑧

�̈�

𝑦
+ (4𝑧 + 2𝑥�̇�)

�̇�

𝑦
.                                               (14c) 

                                                          
Δ(𝑥)

𝐶
=

1−𝑧

𝑥
+ 4𝑥𝑧

�̈�

𝑦
+ 2𝑥�̇�

�̇�

𝑦
+ 1.                                               (14d) 

The dots in system (14) are for the differentiation 
of the given functions with respect to the radial 
coordinate 𝑥 while 𝐶 is a constant parameter. The 
anisotropic equation (14d) is obtained by 

subtracting equation (14b) from (14c). Likewise, 
using the same transformations (13), the 
conformal condition (11) becomes  

 

𝑦 =

{
 
 

 
 𝐴√𝑥 𝑒𝑥𝑝 (

1

2
√(2𝑛 − 1) ∫

𝑑𝑥

𝑥√𝑧
) + 𝐵√𝑥 𝑒𝑥𝑝 (−

1

2
√(2𝑛 − 1) ∫

𝑑𝑥

𝑥√𝑧
) ,     𝑛 >

1

2
𝐴

2
√𝑥 ∫

𝑑𝑥

𝑥√𝑧
+𝐵√𝑥,                                                                                              𝑛 =

1

2

𝐴√𝑥 𝑒𝑥𝑝 (
1

2
√−(2𝑛 − 1)∫

𝑑𝑥

𝑥√𝑧
) + 𝐵√𝑥 𝑒𝑥𝑝 (−

1

2
√−(2𝑛 − 1)∫

𝑑𝑥

𝑥√𝑧
) , 𝑛 <

1

2
.

                       (15) 

In this work, the conformal condition (15) is used with the quark linear equation of state (12) to generate a 
neutral compact star model for quark matter. A thorough physical analysis is then carried out to test the 
validity and acceptability of the generated class of exact solutions.  

Results 

In this section, we present the resulting quark star 
model generated by merging the conformal 
Killing vector and a quark linear equation of 
state. The quark linear equation of state (12) and 
the conformal condition (15) are used together 
with the Einstein field equations (14) to obtain the 

gravitational potentials and other matter 
variables. From condition (15), we simply 

consider the case 𝑛 =
1

2
 with the metric function 𝑦 

being  

                                                        𝑦 =
𝐴

2
√𝑥 ∫

𝑑𝑥

𝑥√𝑧
+𝐵√𝑥.                                                               (16) 

To integrate (16), we opt to specify the gravitational potential 𝑧. This specification is done on physical 
grounds for the purpose of obtaining the second gravitational potential 𝑦. This is done by choosing  

                                                           𝑧 = (
1+𝑎𝑥

1−𝑏𝑥
)
2

.                                                                            (17) 

 
The metric function (17) is physical and realistic 
as it is noted that 𝑧 = 1 at the stellar interior (𝑥 =
0) as proposed by various researchers (Errehymy 
et al., 2022; Jape et al., 2023a; Herrera and Santos, 

1997).  This condition is important for realistic 
quark star models. Similar metric functions to 
(17) were used by various researchers to study 
the behavior of compact stars using approaches 

other than the conformal symmetry (Olengeile et 
al., 2023, 2024; Mathias and Sunzu, 2022). 

However, in this study, the metric function (17) is 
used with conformal Killing vector to study the 
behavior and properties of a neutral quark star.   
To obtain the matter variables, we first use 
equation (17) into (16) to get the second 
gravitational potential as  

                              𝑦 = √𝑥 (
𝐴

2
(𝑎log(x) − (𝑎 + 𝑏) log(1 + 𝑎𝑥)) + 𝐵).                                            (18) 



 

6 
 

Now, using equations (12), (17) and (18) with system (14), the matter variables become 

  𝜌 = 𝐶(𝑎2𝑥(5 − 𝑏𝑥) + 2𝑎(3 + 𝑏𝑥) + 𝑏(6 − 3𝑏𝑥 + 𝑏2𝑥2))(−1 + 𝑏𝑥)−3,                                    (19a) 

𝑝𝑟 =
1

3
(𝐶(𝑎2𝑥(5 − 𝑏𝑥) + 2𝑎(3 + 𝑏𝑥) + 𝑏(6 − 3𝑏𝑥 + 𝑏2𝑥2))(−1 + 𝑏𝑥)−3 − 4𝛾),                     (19b) 

𝑝𝑡 = −𝐶((2(1 + 𝑎𝑥)( −3𝑎𝐴 − 2𝐵 − 2𝑎𝐵√𝑥 − 2𝑏𝐵√𝑥 + 6𝑎𝑏𝐴𝑥 − 4𝑎𝐵𝑥 − 3𝑎𝐴𝑏
2𝑥2 

+2𝑎𝑏𝐵𝑥2 + 𝑎𝐴 (−1 − 𝑏√𝑥 + 𝑎(−√𝑥 − 2𝑥 + 𝑏𝑥2)) log(𝑥) + 𝐴(𝑎 + 𝑏(1 + 𝑏√𝑥) 

−𝑎𝑏2𝑥2 + 2𝑎𝑏(√𝑥 + 𝑥) + 𝑎2(√𝑥 + 2𝑥 − 𝑏𝑥2)) log (1 + 𝑎𝑥)))(√𝑥(−1 + 𝑏𝑥)3 

(−2𝐵 − 𝑎𝐴 log(𝑥) + 𝐴(𝑎 + 𝑏) log(1 + 𝑎𝑥)))),                                                       (19c) 
Δ = 𝑝𝑡 − 𝑝𝑟 .                                                                                                                (19d) 

 
The system of equations (19) provides the model 
equations for the quark star. This is an important 
set of equations that gives the analysis for the 
behavior and properties of quark matter. These 
model equations determine whether the 

generated class of exact solution represent 
astrophysical model with physical significance. 
Also, using the energy density equation (19a), the 
mass function (6) in radial coordinate 𝑥 becomes  

                                              𝑀(𝑥) =
−(𝑎+𝑏)𝐶

1
2𝑥

3
2(2+𝑎𝑥−𝑏𝑥)

2(−1+𝑏𝑥)2
 .                                                            (20) 

 
The mass function (20) is important because it helps to understand the behavior of other properties 
including the mass-radius ratio and the surface redshift.  

 

Discussion  

This section discusses different properties and 
behavior of the resulting quark star model. The 
physical relativistic conditions are analyzed to 
identify whether the generated class of exact 
solution presents a relativistic quark star model 
with physical significances. This is done by 
comparing the results obtained to other models 
generated by various researchers in the literature. 
This is important for model validity and 
acceptability. In conducting the analysis for the 
study and generating the plots, we have specified 
the values of the model parameters as 𝑎 = 0.005, 

𝑏 = −0.350, 𝐶 = 0.050, 𝐴 = 1.005, 𝐵 = 0.050, and 
𝛾 = 0.0186. This was done so that a well behaved 
model is obtained. In plotting the graphs, the 
Python programing was opted while Mathematica 

was used for computational purposes.  

Model’s stability conditions 

The stability of the generated quark star model is 
analyzed by studying the behavior of the heating 
effects within the star. This is given by the ratio 
of the specific heat capacity to constant pressure 
to that of constant volume. This is analyzed by 

the adiabatic conditions 

 

                                                              Γ =
(𝜌+𝑝𝑟)

𝑝𝑟

𝑝𝑟
′

𝜌′
,                                                                      (21a) 

                                                         Γ𝑐𝑟𝑖𝑡 =
4

3
+

19

21
𝜇,                                                                        (21b)  

where 𝜇 is the mass-radius ratio. It is required 
that the conditions (21) satisfy the requirement 

Γ ≥ Γ𝑐𝑟𝑖𝑡. ≥
4

3
 (Maurya and Nag, 2021; Tello-Ortiz 

et al., 2020). The generated quark star model 

satisfies this condition as illustrated in Figure 1. 
Similar features are also found in several 
investigations (Jape et al., 2021; Mathias et al., 
2024). The stability in terms of cracking condition 
is also analyzed and it was found that the speed 

of sound 𝑣𝑟
2 is less than that of light (i.e. 𝑣𝑟

2 < 1) 
as indicated in the same figure. The satisfaction 
of these conditions show that the generated class 
of solutions represent a realistic quark start 

model.    

Equilibrium of the physical forces 

The total interior forces within the star need to 
balance for equilibrium requirement. This 
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condition is outlined in Tolman-Oppenheimer-
Volkoff (TOV) equation (Oppenheimer and 

Volkoff, 1939) given by 

                                                     
−𝜈′(𝜌+𝑝𝑟)

2
−

𝑑𝑝𝑟

𝑑𝑟
+

2Δ

𝑟
= 0.                                                              (22) 

The consecutive terms in equation (22) stand for 
the gravitational (𝐹𝑔), hydrostatic (𝐹ℎ) and 

anisotropic (𝐹𝑎) forces, respectively. The sum of 
these forces are required to be zero for 
equilibrium requirement, that is 𝐹𝑔 + 𝐹ℎ + 𝐹𝑎 = 0 

(Rej et al., 2021; Naz et al., 2021). The profiles for 

the behavior of the forces are indicated in Figure 
2. It is clear that the equilibrium condition is 
satisfied as the forces sum up to zero. Similar 
trends are observed in various studies (Jape et al., 

2023a; Olengeile et al., 2023). 

Continuity of the metric functions 

The metric functions 𝑦 and 𝑧 are required to be 
continuous and free from central singularities. 
This is an important condition for the regularity 
of these quantities. The gravitational potentials 

are required to be 𝑦 = 𝑒2𝜈 ≥ 0 and 𝑧 = 𝑒−2𝜆 = 1 
at the stellar center (Errehymy et al., 2022; Patel et 
al., 2023; Nashed and Capozziello, 2021). It is 

observed from Figure 3 that the behavior of the 
gravitational potentials satisfies this requirement. 
Similar observations are found in various 
researches (Jasim et al., 2021; Thirukkanesh et al., 

2020). 

Energy conditions 

The conditions for the energy properties within a 
quark star need to be satisfied. The energy 
conditions include the weak energy condition 
(WEC), the dominant energy condition (DEC) 
and the strong energy condition (SEC). These 

conditions are given by the following equations:   

                                    WEC:𝜌 − 𝑝𝑟 ≥ 0;  𝜌 − 𝑝𝑡 ≥ 0,                                                                     (23a) 

                                   DEC: 𝜌 − 3𝑝𝑟 ≥ 0;  𝜌 − 3𝑝𝑡 ≥ 0,                                                                  (23b) 

                                            SEC: 𝜌 − 𝑝𝑟 − 2𝑝𝑡 ≥ 0.                                                                        (23c) 

 

All these conditions require the energy to be 
positive throughout the stellar interior (Sunzu 
and Mathias, 2022; Thirukkanesh et al., 2020; 
Maurya et al., 2021). This condition is satisfied as 

indicated in Figure 4. Similar profiles were also 
generated by several authors (Patel et al., 2023; 

Mathias et al., 2021; Maurya et al., 2019). 

Mass, Surface redshift and Compactness  
The mass of the quark star should be an 
increasing function from the center to the surface. 
It is also required that for anisotropic fluids, the 
mass-radius ratio defining the compactness 

factor to be 𝜇 =
𝑀

𝑟
≤ 0.587 and the surface 

redshift 𝑧𝑠 = −1+ (1 − 2𝜇)
−
1

2 not exceeding 
5.211 (Buchdahl, 1959; Ivanov, 2002). The profiles 
for these variables are shown in Figure 5. The 
maximum value for compactness factor is found 
to be 𝜇 = 0.259 and that for surface redshift is 
𝑧𝑠 = 0.167.  These values are compatible with 
several observations in the literature. It is clear 
that the generated quark star model is physical 

and realistic. Similar profiles were also generated 
by various researchers in the past (Jape et al., 

2023b; Christopher et al., 2024). 

Conclusion  

In this study, a new solution for uncharged quark 
star admitting conformal symmetry was 
generated. A quark linear equation of state was 
used with a conformal Killing vector to study the 
behavior and properties of quark matter. The 
conformal condition was analyzed by specifying 
one of the gravitational potentials on physical 
grounds to get the second. This process together 
with the application of the quark equation of state 
and the Einstein field equations help to obtain the 
matter variables for analysis. It is interesting that 
we managed to generate a realistic quark star 
model with conformal Killing vector that satisfies 
many important physical conditions. Uncharged 
compact star models with quark matter 
composition that admit conformal symmetry are 
missing in the current literature. A detailed 
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analysis of the physical relativistic conditions 
was conducted to test the validity and 
acceptability of the generated class of exact 
solution. It was found that the stability condition 
under the adiabatic index ratio and the causality 
condition for the speed of sound throughout the 
stellar interior is satisfied. The speed of sound 
was found to be one third of the speed of light. 
This condition must be satisfied for all quark 
matters. The gravitational potentials were found 
to be regular, continuous throughout the interior 
of the quark star and without central 
singularities. The interior natural physical forces 

balanced for equilibrium requirement as the total 
forces sum up to zero. It was also found that all 
the necessary energy conditions were satisfied as 
well. The behavior of these energies were shown 
to be positive throughout the star interior. We 
have also investigated the behavior of the mass of 
the star and the mass-radius ratio as well as the 
surface redshift. It was observed that the values 
of all these variables are found within the 
acceptable ranges for compact stars.  Satisfaction 
of all these conditions indicate that our class of 
exact solution for a quark star is physically 
realistic. 

Recommendations  

In this work, we have limited ourselves to 
investigate the behavior and properties of a 
quark star that admits conformal symmetry. This 
helped us to generate exact solution of Einstein 
field equations for uncharged quark star.  We 
have not engaged to study properties of stars 
with other matter composition described by 
different equations of state like polytropic, 

Chaplygin, or Van der Waals. It is therefore 
recommended that on the future one can study 
the properties of compact stars with different 
material compositions by using either polytropic, 
Chaplygin or Van der Waals equations of state in 
the presence of conformal symmetry. This can be 
done by specifying new forms for one of the 
gravitational potentials on physical basis. This 
process may lead to generation of realistic 
compact star models with physical significances.   

 
 
 
Figure 1 

Adiabatic indices and sound speed against radial coordinate 𝑟. 
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Figure 2 

Equilibrium forces against radial coordinate 𝑟.

 
 
 

 

 

 

Figure 3 

Gravitational potentials against radial coordinate 𝑟.
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Figure 4  

Energy conditions against radial coordinate 𝑟.

 
 
 
 
 
 
 
 
Figure 5 

Mass, compactness and surface redshift against radial coordinate 𝑟
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